Should Peak Data Rates be specified for 5G (IMT 2020) and 6G (IMT 2030) networks?

Peak Data Rate [1.] is one of the most visible attributes of IMT (International Mobile Telecommunications) cellular networks, e.g. 3G, 4G and 5G. As a result, it gets significant attention from analysts and reporters that create high expectations for  IMT end users which may never be realized in commercially deployed IMT networks.

For example, the peak data rates specified by the ITU-R M.2410 report for IMT-2020 (5G) have not been realized in any 5G production networks under typical conditions. The ITU-R’s 20 Gbps downlink and 10 Gbps uplink targets are theoretical maximums, achievable only in a controlled test environment with ideal conditions. Please refer to the chart below.

……………………………………………………………………………………………………………………………………………………………………..

Note 1. Peak data rate is the theoretical maximum [achievable] data rate under ideal conditions, which is the received data bits assuming error-free conditions assignable to a single mobile station, when all assignable radio resources for the corresponding link direction are utilized (i.e. excluding radio resources that are used for physical layer synchronization, reference signals or pilots, guard bands and guard times).

………………………………………………………………………………………………………………………………………………………………………

5G services are deployed across three main frequency ranges and the speed capability varies dramatically for each.

  • Low-band (sub-6 GHz): Offers wide coverage but only a modest speed improvement over 4G, typically delivering a few hundred Mbps at best.
  • Mid-band (sub-6 GHz): Provides a balance of speed and coverage, with peak speeds sometimes reaching 1 Gbps, though typical average speeds are much lower.
  • High-band (millimeter wave or mmWave): This is the only band capable of reaching multi-gigabit speeds. However, its signal range is very short and it is easily blocked by physical objects, limiting its availability to dense urban areas and specific venues.  5G mmWave base station power consumption is also very high which limits coverage.
Several factors are critical for pushing the boundaries of 5G downlink speeds in live networks:
  • mmWave spectrum: Higher-band millimeter wave spectrum offers massive bandwidth, enabling multi-gigabit speeds. However, its use is limited to dense urban areas and specific venues due to its short range.
  • Carrier aggregation: Combining multiple frequency bands (e.g., mmWave with mid-band) significantly increases the total available bandwidth and is crucial for achieving the highest download speeds.
  • 5G Advanced (Release 18): New developments in 5G-Advanced technology (also known as 5.5G) enable even higher performance. The Telstra record in 2025 utilized 5G Advanced software.
  • Equipment and device capabilities: Peak speeds require cutting-edge network hardware from vendors like Ericsson, Nokia, and Samsung, as well as the latest mobile devices powered by advanced modems from companies like Qualcomm and MediaTek.

The gap between what IMT-2020 (5G) technology can deliver (on paper) and what is actually realized in commercial 5G networks  has grown larger and larger over the past few years [2.].  Here’s a summary of speed differences:

Speed metric ITU-R specification Reality in commercial networks
Peak data rate 20 Gbps (downlink)

10 Gbps (uplink)

Reached only in isolated demonstrations, typically using high-band mmWave technology.
User experienced rate 100 Mbps (downlink)

15 to 50 Mbps (uplink)

The typical average speed for many users, particularly on low- and mid-band deployments.  mmWave is higher, but the range is limited.

Note 2.  The gap is even greater for 5G latency! The minimum required latency in ITU-R M.2410 for user plane are:
– 4 ms for eMBB
1 ms for URLLC
assumes unloaded conditions (a single user) for small IP packets (e.g. 0 byte payload + IP header), for both downlink and uplink.

The minimum requirement for control plane latency is 20 ms. Proponents are encouraged to consider lower control plane latency, e.g. 10 ms.

However, the average latency experienced in deployed commercial 5G networks is higher, typically ranging between 5 and 20 milliseconds, depending on the network architecture, spectrum, and use case.  One reason is that the 3GPP Release 16 spec for 5G-NR enhancements for URLLC in the RAN and Core network were never completed.

5G mmWave spectrum has the potential for the lowest latency, but its limited range and line-of-sight requirements limit restrict deployments to dense urban areas.  Therefore, most 5G users connect via mid-band or low-band, which have higher latency.

……………………………………………………………………………………………………………………………………………………………….

For that reason, several companies (Apple, Nokia, TELECOM ITALIA, Deutsche Telekom, SK Telecom, Spark NZ, AT&T) have proposed not to define IMT-2030 peak data rate requirement values in ITU-R M.[IMT-2030.TECH PERF REQ] nor to maintain the IMT-2020 (5G) peak data rate numbers from the ITU-R M.2410 report.

Author’s Note: The IMT-2030 performance requirements in ITU-R M.[IMT-2030.TECH PERF REQ] are to be evaluated according to the criteria defined in Report ITU-R M.[IMT‑2030.EVAL] and Report ITU-R M.[IMT-2030.SUBMISSION] for the development of IMT-2030 recommendations within ITU-R WP5D.

……………………………………………………………………………………………………………………………………………………………………………….

Addendum – Measurements of top 5G network speeds:

  • In the first half of 2025, Ookla said  e& in the United Arab Emirates was the world’s fastest 5G network, noting a median upload speed of 52.21 Mbps. Other top performers like South Korea, Qatar, and Brazil also see median speeds well above 20 Mbps.
  • U.S. performance: In the U.S., major carriers are in a close race. In mid-2024, Opensignal found Verizon with the fastest 5G upload speed at 21.2 Mbps, with T-Mobile close behind. However, as of early 2025, a separate Opensignal report credited T-Mobile with the fastest overall upload experience, at 17.9 Mbps, though that figure includes both 4G and 5G connections.
  • European performance: Speeds vary across Europe. Ookla reported that in the first half of 2025, Magenta Telekom in Austria achieved a median 5G upload speed of 35.67 Mbps, while Three in the U.K. recorded a median of 13.07 Mbps.
  • Rural vs. urban divide: Average 5G uplink speeds are often higher in urban areas where mid-band spectrum is more prevalent. However, as of mid-2023, Opensignal noted that the rural-urban gap for 5G upload speeds in the U.S. was narrowing due to increased rural investment.
  • Dependence on network type: Whether a network uses 5G standalone (SA) or non-standalone (NSA) architecture impacts speeds. In early 2025, an analysis in the U.K. showed that while 5G SA had lower latency, 5G NSA still had a slightly higher proportion of high-speed uplink connections. 

…………………………………………………………………………………………………………………………………………………………

References:

https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/S01-1_Requirements%20for%20IMT-2020_Rev.pdf

https://www.itu.int/pub/r-rep-m.2410-2017

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2410-2017-PDF-E.pdfITU-R WP 5D reports on: IMT-2030 (“6G”) Minimum Technology Performance Requirements; Evaluation Criteria & Methodology

3GPP Release 16 5G NR Enhancements for URLLC in the RAN & URLLC in the 5G Core network

 

IMT-2030 Technical Performance Requirements (TPR) from ITU-R WP5D

Key Objectives of WG Technology Aspects at ITU-R WP 5D meeting June 24-July 3, 2025

ITU-R WP5D IMT 2030 Submission & Evaluation Guidelines vs 6G specs in 3GPP Release 20 & 21

ITU-R: IMT-2030 (6G) Backgrounder and Envisioned Capabilities

Draft new ITU-R recommendation (not yet approved): M.[IMT.FRAMEWORK FOR 2030 AND BEYOND]

ITU-R M.2150-1 (5G RAN standard) will include 3GPP Release 17 enhancements; future revisions by 2025

 

 

Read More